The power supply design considerations for 5G base stations
During quiescent periods—typically 5 ms to 100 ms—the PSU must minimize all load power with the basic functions of the antenna unit remaining active. It also must be able to
The limited penetration capability of millimeter waves necessitates the deployment of significantly more 5G base stations (the next generation Node B, gNB) than their 4G counterparts to ensure network coverage . Notably, the power consumption of a gNB is very high, up to 3–4 times of the power consumption of a 4G base stations (BSs).
In 5G-RAN, the gNB systems within designated areas are combined into gNBs-clusters by aggregators. All gNBs-clusters are powered by the power system plane through power feeders, so switching the modes of a certain number of gNBs (sleep/active) and BESSs (charge/idle/discharge) can alter the power injection of the power system.
The 5G network and power system are coupled energetically by power feeders. Based on gNB-sleep actions and mode switching of their BESSs, 5G network can provide power support to the power system when the grid frequency deviation reaches the threshold.
The radius of coverage area of 5G high-frequency base stations will be less than one-tenth of that of 4G base stations, and the coverage area of 5G high-frequency base stations will be less than one percent of that of 4G base stations. The deployment of macro base stations is difficult and the site resources are not easy to obtain.
PDF version includes complete article with source references.
Get technical specifications, ROI analysis tools, and pricing information for our BESS integration and energy storage solutions.
Av. de la Innovación 15
28042 Madrid, Spain
+34 91 133 2769
Monday - Friday: 9:00 AM - 6:00 PM CET