Single-Flow Batteries Leveraging Multiphase Electrolytes
Figure 1: Schematic of a discharging single-flow battery leveraging a multiphase flow electrolyte. The flow consists of a continuous, bromine-poor aqueous phase and
Flow Batteries Flow batteries are electrochemical cells, in which the reacting substances are stored in electrolyte solutions external to the battery cell Electrolytes are pumped through the cells Electrolytes flow across the electrodes Reactions occur atthe electrodes Electrodes do not undergo a physical change Source: EPRI K. Webb ESE 471 4
To reduce system capital costs, single-flow membraneless flow batteries are under intense investigation, but require intricate flow engineering. In this work, we analytically and numerically model the flow and chemical species transport for a novel single-flow geometry, and show enhancement of reactant transport and separation.
In multiphase single flow batteries, a well-mixed suspension of droplets within a continuous phase enters the battery cell. Since the droplets' density differs from the suspension's density, the droplets sediment or rise to one of the electrodes.
Flow batteries require electrolyte to be pumped through the cell stack Pumps require power Pump power affects efficiency Need a fluid model for the battery in order to understand how mechanical losses affect efficiency K. Webb ESE 471 29 RFB Fluid Model Power required to pump electrolyte through cell stack Pumping power is proportional to
PDF version includes complete article with source references.
Get technical specifications, ROI analysis tools, and pricing information for our BESS integration and energy storage solutions.
Av. de la Innovación 15
28042 Madrid, Spain
+34 91 133 2769
Monday - Friday: 9:00 AM - 6:00 PM CET