BOTSWANA ENERGY STORAGE FIRE FIGHTING SOLUTION
Safety innovations including multi-stage fire suppression and gas detection systems have reduced insurance premiums by 30% for container-based projects. New modular designs enable
High-quality fire extinguishing agents and effective fire extinguishing strategies are the main means and necessary measures to suppress disasters in the design of battery energy storage stations . Traditional fire extinguishing methods include isolation, asphyxiation, cooling, and chemical suppression .
With the advantages of high energy density, short response time and low economic cost, utility-scale lithium-ion battery energy storage systems are built and installed around the world. However, due to the thermal runaway characteristics of lithium-ion batteries, much more attention is attracted to the fire safety of battery energy storage systems.
In 2019, EPRI began the Battery Energy Storage Fire Prevention and Mitigation – Phase I research project, convened a group of experts, and conducted a series of energy storage site surveys and industry workshops to identify critical research and development (R&D) needs regarding battery safety.
The challenges of providing effective fire and explosion hazard mitigation strategies for Battery Energy Storage Systems (BESS) are receiving appreciable attention, given that renewable energy production has evolved significantly in recent years and is projected to account for 80% of new power generation capacity in 2030 (WEO, 2023).
PDF version includes complete article with source references.
Get technical specifications, ROI analysis tools, and pricing information for our BESS integration and energy storage solutions.
Av. de la Innovación 15
28042 Madrid, Spain
+34 91 133 2769
Monday - Friday: 9:00 AM - 6:00 PM CET