Air-cooled and liquid-cooled energy storage container
To maintain the temperature within the container at the normal operating temperature of the battery, current energy storage containers have two main heat dissipation
The average daily energy consumption of the conventional air conditioning is 20.8 % in battery charging and discharging mode and 58.4 % in standby mode. The proposed container energy storage temperature control system has an average daily energy consumption of 30.1 % in battery charging and discharging mode and 39.8 % in standby mode. Fig. 10.
Fig. 1 (a) shows the schematic diagram of the proposed composite cooling system for energy storage containers. The liquid cooling system conveys the low temperature coolant to the cold plate of the battery through the water pump to absorb the heat of the energy storage battery during the charging/discharging process.
In view of the temperature control requirements for charging/discharging of container energy storage batteries, the selection of the compressor is based on the rated operating condition of the system at 45 °C outdoor temperature and 18 °C water inlet temperature to achieve 60 kW cooling capacity.
An energy storage temperature control system is proposed. The effect of different cooling and heating conditions on the proposed system was investigated. An experimental rig was constructed and the results were compared to a conventional temperature control system.
PDF version includes complete article with source references.
Get technical specifications, ROI analysis tools, and pricing information for our BESS integration and energy storage solutions.
Av. de la Innovación 15
28042 Madrid, Spain
+34 91 133 2769
Monday - Friday: 9:00 AM - 6:00 PM CET