Solar Power Indonesia
Solar Power Indonesia partners with leading industrial customers and international consultants to deploy solar power systems that are reliable, efficient, and sustainable.
An improved base station power system model is proposed in this paper, which takes into consideration the behavior of converters. And through this, a multi-faceted assessment criterion that considers both economic and ecological factors is established.
The optimization of PV and ESS setup according to local conditions has a direct impact on the economic and ecological benefits of the base station power system. An improved base station power system model is proposed in this paper, which takes into consideration the behavior of converters.
This study proposes the use of the integrated photovoltaic (PV) system as a power sources for BTS in the remote and isolated areas where the electricity from the grid is unavailable. The results show that the use of PV system is capable of supplying the electrical load requirement of BTS and is very feasible in financial analysis.
The proposed evaluation method achieves a balance in LCC, initial investment, return on investment, and carbon emissions. From the perspective of LCC and carbon emissions, base stations with lower annual irradiance levels can install more PV.
PDF version includes complete article with source references.
Get technical specifications, ROI analysis tools, and pricing information for our BESS integration and energy storage solutions.
Av. de la Innovación 15
28042 Madrid, Spain
+34 91 133 2769
Monday - Friday: 9:00 AM - 6:00 PM CET