Advancing Flow Batteries: High Energy Density
A high‐energy‐density room‐temperature liquid metal‐based flow battery supporting rapid mechanical charging as well as conventional
Flow batteries can be classified using different schemes: 1) Full-flow (where all reagents are in fluid phases: gases, liquids, or liquid solutions), such as vanadium redox flow battery vs semi-flow, where one or more electroactive phases are solid, such as zinc-bromine battery.
Other flow-type batteries include the zinc–cerium battery, the zinc–bromine battery, and the hydrogen–bromine battery. A membraneless battery relies on laminar flow in which two liquids are pumped through a channel, where they undergo electrochemical reactions to store or release energy. The solutions pass in parallel, with little mixing.
Conventional flow batteries have aqueous solutions on both sides, and thus are constrained in voltage by water splitting (∼1.5 V). Replacing the negative side with a liquid metal would yield a much higher voltage flow battery, benefiting energy density, power density, and efficiency. As a room-temperature liquid metal, Na-K is attractive.
"Room-temperature flow battery uses liquid sodium-potassium alloy". ^ Li, Zheng; Sam Pan, Menghsuan; Su, Liang; Tsai, Ping-Chun; Badel, Andres F.; Valle, Joseph M.; Eiler, Stephanie L.; Xiang, Kai; Brushett, Fikile R.; Chiang, Yet-Ming (11 October 2017). "Air-Breathing Aqueous Sulfur Flow Battery for Ultralow-Cost Long-Duration Electrical Storage".
PDF version includes complete article with source references.
Get technical specifications, ROI analysis tools, and pricing information for our BESS integration and energy storage solutions.
Av. de la Innovación 15
28042 Madrid, Spain
+34 91 133 2769
Monday - Friday: 9:00 AM - 6:00 PM CET