Solar container communication station wind power
A globally interconnected solar-wind power system can meet future electricity demand while lowering costs, enhancing resilience, and supporting a stable, sustainable transition to net
Accelerating energy transition towards renewables is central to net-zero emissions. However, building a global power system dominated by solar and wind energy presents immense challenges. Here, we demonstrate the potential of a globally interconnected solar-wind system to meet future electricity demands.
Theoretically, the potential of solar and wind resources on Earth vastly surpasses human demand 33, 34. In our pursuit of a globally interconnected solar-wind system, we have focused solely on the potentials that are exploitable, accessible, and interconnectable (see “Methods”).
As the degree of interconnectivity increases, solar-wind development gradually shifts towards regions with distinct resource advantages, such as the midwestern United States for superior solar resources, and coastal or high-altitude areas for high wind energy potential (Fig. 2a, b).
'Interconnectability' refers to the requirement that any proposed power plant must be located no farther than 10 kilometers from the existing transmission lines. Notably, offshore wind energy exploitation is confined to the exclusive economic zone.
PDF version includes complete article with source references.
Get technical specifications, ROI analysis tools, and pricing information for our BESS integration and energy storage solutions.
Av. de la Innovación 15
28042 Madrid, Spain
+34 91 133 2769
Monday - Friday: 9:00 AM - 6:00 PM CET