Advances in solid-state, sodium-ion, and flow batteries promise higher energy densities, faster charging, and longer lifespans, enabling electric vehicles to travel farther, microgrids to operate efficiently, and renewable energy to integrate seamlessly into the grid. . Abstract—This study provides a comprehensive overview of recent advances in electrochemical energy storage, including Na+-ion, metal-ion, and metal-air batteries, alongside innovations in electrode engineering, electrolytes, and solid-electrolyte interphase control. Batteries, as electrochemical energy conversion devices, operate through controlled redox reactions that transform stored chemical energy into electrical. . As a sustainable and clean technology, EECS has been among the most valuable options for meeting increasing energy requirements and carbon neutralization. Consequently, EECS technologies with high energy and power density were introduced to manage prevailing energy needs and ecological issues. In. . Energy storage beyond lithium ion is rapidly transforming how we store and deliver power in the modern world.