This paper presents a novel utility-scale flywheel ESS that features a shaftless, hubless flywheel. The unique shaftless design gives it the potential of doubled energy density and a compact. The FESS structure is described in detail, along with its major components and their. . What is a flywheel/kinetic energy storage system (fess)? Thanks to the unique advantages such as long life cycles, high power density, minimal environmental impact, and high power quality such as fast response and voltage stability, the flywheel/kinetic energy storage system (FESS) is gaining. . Supporting California's loading order to meet energy needs first with energy efficiency and demand response, next with renewable energy (distributed generation and utility scale), and finally with clean conventional electricity supply. Supporting low-emission vehicles and transportation. Providing. . Flywheel energy storage (FES) works by spinning a rotor (flywheel) and maintaining the energy in the system as rotational energy. When energy is extracted from the system, the flywheel's rotational speed is reduced as a consequence of the principle of conservation of energy; adding energy to the. . There is noticeable progress in FESS, especially in utility, large-scale deployment for the electrical grid, and renewable energy applications. Due to the highly interdisciplinary nature of FESSs, we survey different design. . Yes, with grid-forming drive. 2 m diameter x 7 m deep, 6 m of which buried. No flammable electrolyte or gaseous hydrogen release. Power conversion components on 10-year replacement cycle. £750k per 1 MW, 2 MWh system. Equipment installation up to low voltage connection point.